1458. 两个子序列的最大点积#
问题描述#
给你两个数组
nums1
和nums2
。请你返回
nums1
和nums2
中两个长度相同的 非空 子序列的最大点积。数组的非空子序列是通过删除原数组中某些元素(可能一个也不删除)后剩余数字组成的序列,但不能改变数字间相对顺序。比方说,
[2,3,5]
是[1,2,3,4,5]
的一个子序列而[1,5,3]
不是。
示例 1:
输入:nums1 = [2,1,-2,5], nums2 = [3,0,-6] 输出:18 解释:从 nums1 中得到子序列 [2,-2] ,从 nums2 中得到子序列 [3,-6] 。 它们的点积为 (2*3 + (-2)*(-6)) = 18 。
示例 2:
输入:nums1 = [3,-2], nums2 = [2,-6,7] 输出:21 解释:从 nums1 中得到子序列 [3] ,从 nums2 中得到子序列 [7] 。 它们的点积为 (3*7) = 21 。
示例 3:
输入:nums1 = [-1,-1], nums2 = [1,1] 输出:-1 解释:从 nums1 中得到子序列 [-1] ,从 nums2 中得到子序列 [1] 。 它们的点积为 -1 。
提示:
1 <= nums1.length, nums2.length <= 500
-1000 <= nums1[i], nums2[i] <= 100
点积:
定义
a = [a1, a2,…, an]
和b
= [b1, b2,…, bn]
的点积为: 这里的 Σ 指示总和符号。
解题思路#
类似于最长公共字符串。
状态转移方程:
1 2 3 4 5 6 7 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|