跳转至

959. 由斜杠划分区域#

问题描述#

在由 1 x 1 方格组成的 N x N 网格 grid 中,每个 1 x 1 方块由 /\ 或空格构成。这些字符会将方块划分为一些共边的区域。

(请注意,反斜杠字符是转义的,因此 \"\\" 表示。)。

返回区域的数目。

 

示例 1:

输入:
[
  " /",
  "/ "
]
输出:2
解释:2x2 网格如下:

示例 2:

输入:
[
  " /",
  "  "
]
输出:1
解释:2x2 网格如下:

示例 3:

输入:
[
  "\\/",
  "/\\"
]
输出:4
解释:(回想一下,因为 \ 字符是转义的,所以 "\\/" 表示 \/,而 "/\\" 表示 /\。)
2x2 网格如下:

示例 4:

输入:
[
  "/\\",
  "\\/"
]
输出:5
解释:(回想一下,因为 \ 字符是转义的,所以 "/\\" 表示 /\,而 "\\/" 表示 \/。)
2x2 网格如下:

示例 5:

输入:
[
  "//",
  "/ "
]
输出:3
解释:2x2 网格如下:

 

提示:

  1. 1 <= grid.length == grid[0].length <= 30
  2. grid[i][j] 是 '/''\'、或 ' '

解题思路#

把每个格子分成左右两部分,然后对每个格子判断它与左边格子以及上边格子(不用四个方向都判断)的连通性即可。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
class UnionFind:
    def __init__(self):
        self.fa = None
        self.size = None

    def init_set(self, n: int) -> None:
        self.fa = list(range(n))
        self.size = [1] * n

    def find_set(self, x: int) -> int:
        if x != self.fa[x]:
            self.fa[x] = self.find_set(self.fa[x])
        return self.fa[x]

    def union_set(self, x: int, y: int) -> bool:
        x, y = self.find_set(x), self.find_set(y)
        if x == y: return False
        if self.size[x] < self.size[y]: x, y = y, x
        self.fa[y] = x
        self.size[x] += self.size[y]
        return True

    def is_connected(self, x: int, y: int) -> bool:
        return self.find_set(x) == self.find_set(y)

    def count(self) -> int:
        return sum(1 for i, x in enumerate(self.fa) if i == x)

class Solution:
    def regionsBySlashes(self, grid: List[str]) -> int:
        n = len(grid)
        uf = UnionFind()
        uf.init_set(2 * n * n)

        def child(i: int, j: int) -> List[int]:
            x = i * n + j
            return [x << 1, (x << 1) + 1]

        for i in range(n):
            for j in range(n):
                left, right = child(i, j)

                if grid[i][j] == ' ': uf.union_set(left, right)

                r, c = i, j - 1
                if c >= 0:
                    ll, rr = child(r, c)
                    uf.union_set(left, rr)

                r, c = i - 1, j
                if r >= 0:
                    ll, rr = child(r, c)
                    if grid[i][j] == '/' or grid[i][j] == ' ':
                        if grid[r][c] == '/' or grid[r][c] == ' ':
                            uf.union_set(left, rr)
                        else:
                            uf.union_set(left, ll)
                    else:
                        if grid[r][c] == '/' or grid[r][c] == ' ':
                            uf.union_set(right, rr)
                        else:
                            uf.union_set(right, ll)
        return uf.count()
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class UnionFind {
public:
    vector<int> fa, size;

    void init_set(int n) {
        fa.resize(n), size.resize(n);
        for (int i = 0; i < n; ++i) { fa[i] = i, size[i] = 1; }
    }

    int find_set(int x) { return x == fa[x] ? x : (fa[x] = find_set(fa[x])); }

    bool union_set(int x, int y) {
        x = find_set(x), y = find_set(y);
        if (x == y) return false;
        if (size[x] < size[y]) swap(x, y);
        fa[y] = x, size[x] += size[y];
        return true;
    }

    bool is_connected(int x, int y) { return find_set(x) == find_set(y); }

    int count() {
        int n = fa.size(), cnt = 0;
        for (int i = 0; i < n; ++i) if (i == fa[i]) ++cnt;
        return cnt;
    }
};

class Solution {
public:
    int regionsBySlashes(vector<string>& grid) {
        int n = grid.size();

        auto uf = UnionFind();
        uf.init_set(2 * n * n);

        auto child = [n] (int i, int j) {
            int x = i * n + j;
            return make_pair(x << 1, (x << 1) + 1);
        };

        int r, c, ll, rr, left, right;
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
                tie(left, right) = child(i, j);

                if (grid[i][j] == ' ') uf.union_set(left, right);

                r = i, c = j - 1;
                if (c >= 0) {
                    tie(ll, rr) = child(r, c);
                    uf.union_set(left, rr);
                }

                r = i - 1, c = j;
                if (r >= 0) {
                    tie(ll, rr) = child(r, c);
                    if (grid[i][j] == ' ' || grid[i][j] == '/') {
                        if (grid[r][c] == ' ' || grid[r][c] == '/') uf.union_set(left, rr);
                        else uf.union_set(left, ll);
                    } else {
                        if (grid[r][c] == ' ' || grid[r][c] == '/') uf.union_set(right, rr);
                        else uf.union_set(right, ll);
                    }
                }
            }
        }

        return uf.count();
    }
};
返回顶部

在手机上阅读