1834. 单线程 CPU#
问题描述#
给你一个二维数组
tasks
,用于表示n
项从0
到n - 1
编号的任务。其中tasks[i] = [enqueueTimei, processingTimei]
意味着第i
项任务将会于enqueueTimei
时进入任务队列,需要processingTimei
的时长完成执行。现有一个单线程 CPU ,同一时间只能执行 最多一项 任务,该 CPU 将会按照下述方式运行:
- 如果 CPU 空闲,且任务队列中没有需要执行的任务,则 CPU 保持空闲状态。
- 如果 CPU 空闲,但任务队列中有需要执行的任务,则 CPU 将会选择 执行时间最短 的任务开始执行。如果多个任务具有同样的最短执行时间,则选择下标最小的任务开始执行。
- 一旦某项任务开始执行,CPU 在 执行完整个任务 前都不会停止。
- CPU 可以在完成一项任务后,立即开始执行一项新任务。
返回 CPU 处理任务的顺序。
示例 1:
输入:tasks = [[1,2],[2,4],[3,2],[4,1]] 输出:[0,2,3,1] 解释:事件按下述流程运行: - time = 1 ,任务 0 进入任务队列,可执行任务项 = {0} - 同样在 time = 1 ,空闲状态的 CPU 开始执行任务 0 ,可执行任务项 = {} - time = 2 ,任务 1 进入任务队列,可执行任务项 = {1} - time = 3 ,任务 2 进入任务队列,可执行任务项 = {1, 2} - 同样在 time = 3 ,CPU 完成任务 0 并开始执行队列中用时最短的任务 2 ,可执行任务项 = {1} - time = 4 ,任务 3 进入任务队列,可执行任务项 = {1, 3} - time = 5 ,CPU 完成任务 2 并开始执行队列中用时最短的任务 3 ,可执行任务项 = {1} - time = 6 ,CPU 完成任务 3 并开始执行任务 1 ,可执行任务项 = {} - time = 10 ,CPU 完成任务 1 并进入空闲状态
示例 2:
输入:tasks = [[7,10],[7,12],[7,5],[7,4],[7,2]] 输出:[4,3,2,0,1] 解释:事件按下述流程运行: - time = 7 ,所有任务同时进入任务队列,可执行任务项 = {0,1,2,3,4} - 同样在 time = 7 ,空闲状态的 CPU 开始执行任务 4 ,可执行任务项 = {0,1,2,3} - time = 9 ,CPU 完成任务 4 并开始执行任务 3 ,可执行任务项 = {0,1,2} - time = 13 ,CPU 完成任务 3 并开始执行任务 2 ,可执行任务项 = {0,1} - time = 18 ,CPU 完成任务 2 并开始执行任务 0 ,可执行任务项 = {1} - time = 28 ,CPU 完成任务 0 并开始执行任务 1 ,可执行任务项 = {} - time = 40 ,CPU 完成任务 1 并进入空闲状态
提示:
tasks.length == n
1 <= n <= 105
1 <= enqueueTimei, processingTimei <= 109
解题思路#
首先需要根据 \([\text{enqueueTime}_i, \text{processingTime}_i, i]\) 排序,得到结果 V
。
然后选择 V[0]
执行,并在 V
中移除该任务,得到执行结束时间 end
。
然后在 V
中选择 所有入队时间小于等于 end
的任务,放入到最小堆 S
中,从中选择 执行时间最短的任务 作为执行任务,并更新 end
。
如果 V
中没有 入队时间小于等于 end
的任务,则选择第一个任务执行。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|
时间复杂度:\(\mathcal{O}(n\log(n))\)
空间复杂度:\(\mathcal{O}(n)\)