跳转至

480. 滑动窗口中位数#

问题描述#

中位数是有序序列最中间的那个数。如果序列的长度是偶数,则没有最中间的数;此时中位数是最中间的两个数的平均数。

例如:

  • [2,3,4],中位数是 3
  • [2,3],中位数是 (2 + 3) / 2 = 2.5

给你一个数组 nums,有一个长度为 k 的窗口从最左端滑动到最右端。窗口中有 k 个数,每次窗口向右移动 1 位。你的任务是找出每次窗口移动后得到的新窗口中元素的中位数,并输出由它们组成的数组。

 

示例:

给出 nums = [1,3,-1,-3,5,3,6,7],以及 k = 3。


窗口位置                      中位数
---------------               -----
[1  3  -1] -3  5  3  6  7       1
 1 [3  -1  -3] 5  3  6  7      -1
 1  3 [-1  -3  5] 3  6  7      -1
 1  3  -1 [-3  5  3] 6  7       3
 1  3  -1  -3 [5  3  6] 7       5
 1  3  -1  -3  5 [3  6  7]      6

 因此,返回该滑动窗口的中位数数组 [1,-1,-1,3,5,6]

 

提示:

  • 你可以假设 k 始终有效,即:k 始终小于输入的非空数组的元素个数。
  • 与真实值误差在 10 ^ -5 以内的答案将被视作正确答案。

解题思路#

方法一:双 multiset#

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class Solution {
public:
    vector<double> medianSlidingWindow(vector<int>& nums, int k) {
        int n = nums.size();
        vector<double> ans(n - k + 1);
        multiset<int, greater<>> left;
        multiset<int, less<>> right;

        for (int i = 0; i < n; ++i) {
            right.emplace(nums[i]);
            left.emplace(*right.begin());
            right.erase(right.begin());

            if (left.size() + right.size() > k) {
                auto it = right.find(nums[i - k]);
                if (it != right.end())  right.erase(it);
                else left.erase(left.find(nums[i - k]));
            }

            while (left.size() > right.size()) {
                right.emplace(*left.begin());
                left.erase(left.begin());
            }

            if (left.size() + right.size() == k) {
                ans[i - k + 1] = k & 1 ? (double)*right.begin() : ((double)*right.begin() + *left.begin()) / 2;
            }
        }

        return ans;
    }
};

方法二:双 set#

来自:Java using two Tree Sets - O(n logk)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
class Solution {
public:
    vector<double> medianSlidingWindow(vector<int>& nums, int k) {
        auto gt_cmp = [&nums] (int i, int j) {
            return nums[i] != nums[j] ? nums[i] > nums[j] : i < j;
        };

        auto lt_cmp = [&nums] (int i, int j) {
            return nums[i] != nums[j] ? nums[i] < nums[j] : i < j;
        };

        set<int, decltype(gt_cmp)> left(gt_cmp);
        set<int, decltype(lt_cmp)> right(lt_cmp);

        auto balance = [&left, &right] {
            while (left.size() > right.size()) {
                right.emplace(*left.begin());
                left.erase(left.begin());
            }
        };

        function<double()> median;
        if (k & 1) {
            median = [&nums, &right] {
                return nums[*right.begin()];
            };
        } else {
            median = [&nums, &left, &right] {
                return ((double) nums[*right.begin()] + nums[*left.begin()]) / 2;  
            };
        }

        int n = nums.size();
        vector<double> ans(n - k + 1);

        for (int i = 0; i < k; ++i) left.emplace(i);
        balance(); ans[0] = median();

        for (int i = k; i < n; ++i) {
            if (!right.erase(i - k)) left.erase(i - k);

            right.emplace(i), left.emplace(*right.begin()), right.erase(right.begin());
            balance(); ans[i - k + 1] = median();
        }

        return ans;
    }
};

因为保存的元素是下标,不存在重复值,所以可以使用 set

方法三:单 set 加中位数指针#

来自:O(n log k) C++ using multiset and updating middle-iterator

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution {
public:
    vector<double> medianSlidingWindow(vector<int>& nums, int k) {
        auto cmp = [&nums] (int i, int j) {
            return nums[i] != nums[j] ? nums[i] < nums[j] : i < j;  
        };

        set<int, decltype(cmp)> window(cmp);

        for (int i = 0; i < k; ++i) window.emplace(i);

        auto mid = next(window.begin(), k / 2);

        int n = nums.size();
        vector<double> ans(n - k + 1);

        ans[0] = ((double) nums[*mid] + nums[*prev(mid, 1 - (k & 1))]) / 2;

        for (int i = k; i < n; ++i) {
            window.emplace(i);
            if (nums[i] < nums[*mid]) --mid;

            if (nums[i - k] <= nums[*mid]) ++mid;
            window.erase(i - k);

            ans[i - k + 1] = ((double) nums[*mid] + nums[*prev(mid, 1 - (k & 1))]) / 2;
        }

        return ans;
    }
};

关于中位数指针的移动,可以对 \(k\) 为奇数和偶数时分别考虑,发现无论奇偶,下面的移动总是成立的。

1
2
3
4
5
window.emplace(i);
if (nums[i] < nums[*mid]) --mid;

if (nums[i - k] <= nums[*mid]) ++mid;
window.erase(i - k);

而且对于插入,要先插入后移动;对于删除,要先移动后删除。

方法四:神奇的 Python 切片赋值#

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
class Solution:
    def medianSlidingWindow(self, nums: List[int], k: int) -> List[float]:
        n = len(nums)
        window = []
        ans = []

        for i in range(n):
            idx = bisect_left(window, nums[i])
            window[idx:idx] = [nums[i]]

            if len(window) > k:
                idx = bisect_left(window, nums[i - k])
                window[idx:idx+1] = []

            if len(window) == k:
                median = (window[k // 2] + window[(k - 1) // 2]) / 2
                ans.append(median)

        return ans

前三种方法的时间复杂度都是 \(\mathcal{O}(n\log k)\),最后一种方法的时间复杂度实际上是 \(\mathcal{O}(nk)\)

返回顶部

在手机上阅读